CORRIENTE RESOURCES INC.

520-800 WEST PENDER ST. VANCOUVER, B.C. V6C 2V6 **PH 604 687-0449 FAX 604 687-0827**

E-mail: invest@corriente.com

Disclosure statements as required by the TSX and National Instrument 43-101 are available at our website www.corriente.com

"NEWS RELEASE"

For Immediate Release
Trading Symbol: CTQ-TSX

May 05, 2004

MORE HIGH GRADE COPPER AND GOLD INTERSECTED DURING FEASIBILITY DRILLING AT MIRADOR

Drilling has been completed for the planned feasibility study at the Mirador project. Most of the results are now available and confirm the presence of high grade copper in the northwest and southeast portions of the deposit (see attached map which shows the outline of all drill holes with greater than 15 metres of 0.65% Cu). Corriente President and CEO, Ken Shannon, commented "Drilling has met our expectations in terms of confirming continuity of mineralization, refining our geological model and most importantly, providing additional definition of high grade zones." Highlights of the feasibility drilling carried out this year include the following:

Northwest Zone	Hole	Depth(m)	Width(m)	Copper(%)	Gold(g/t)
	M64	61	214	0.89	0.17
	M63	55	345.5	0.79	0.29
	M88	73	117	0.84	0.40
	M87	27	252	0.76	0.17
Southeast Zone	M74	34	241	0.88	0.32
	M71	4	177	0.74	0.23

(Note that M-63 and M-64 were disclosed in a press release dated Feb 16/04)

This drilling is expected to form the basis for a Mineral Resource Estimate to be completed by the Resource, Mining and Metallurgy Feasibility Study Manager, AMEC Americas Limited. The Mineral Resource Estimate will allow detailed examination of the high grade northwest zone so that planning for a starter open pit can be completed. For complete details of the most recent feasibility drilling please refer to the table below.

	Drill Holes in Main Mineralized Zone							
Hole	From	To	Width(m)	Au ppb	Cu (%)	Zone		
M68*	0	20	20	211	0.07	leached		
inclined	20	24	4	98	1.29	enriched		
85 @ 090	24	90	66	140	0.66	primary		
	90	228	138	169	0.42	primary		
	228	315.47	87.47	144	0.68*	primary		
M69	0	3	3	114	0.05	leached		
inclined	3	29	26	171	0.73	primary		

80 @ 110	29	71	42	156	0.48	primary
	71	236	165	179	0.67	primary
	236	269.75	33.75	121	0.54	primary
						•
M70	0	7	7	216	0.45	leached
vertical	7	55	48	130	0.38	primary
	55	93	38	161	0.71	primary
	93	249.94	156.94	77	0.21	primary
M71	0	4	4	201	0.12	leached
inclined	4	181	177	234	0.74	primary
80 @ 110	181	214	33	131	0.14	primary
	214	295	81	262	0.85	primary
	295	300.23	5.23	81	0.56	primary
M72	0	40	40	174	0.09	leached
vertical	40	135	95	207	0.52	primary
	135	286.51	151.51	217	0.65	primary
M73	0	25	25	288	0.13	leached
vertical	25	91	66	230	0.73	primary
· Oi tioui	91	188.98	97.98	65	0.73	post-mineral
M74	0	34	34	278	0.20	leached
inclined	34	56	22	347	1.44	enriched
85 @ 270	56	275	219	322	0.82	primary
	275	288.04	13.04	184	0.52	primary
M76	0	29	29	158	0.04	leached
vertical	29	182	153	237	0.49	primary
Vertical	182	212	30	381	0.49	primary
	212	254.51	42.51	191	0.46	primary
M79	0	59	50	204	0.09	leached
vertical	5 9	71	59 12	346	1.07	enriched
vertical	71	269.75	198.75	259	0.69	primary
	71	203.73	190.75	233	0.03	primary
M81***	0	100	100	ns	ns	late dike
vertical	100	135	35	110	0.21	primary
	135	156	21	304	0.76	primary
	156	193	37	68	0.14	late dike
	193	256.03	63.03	221	0.68	primary
M82	0	23	23	201	0.13	leached
inclined	23	47	24	281	1.30	enriched
65 @ 090	47	206	159	297	0.49	primary
	206	225.55	19.55	391	1.00	primary
M84	0	12	12	242	0.08	leached
vertical	12	18	6	200	1.00	enriched
	18	45	27	221	0.55	primary •
	45	81	36	223	0.71	primary
	81	174	93	175	0.52	primary
	174	210	36	214	0.66	primary
	210	249.94	39.94	148	0.53	primary

inclined	5	202.69	197.69	172	0.74	primary
60 @ 135						
M87**	0	27	27	151	0.05	leached
inclined	27	81	54	137	1.05	enriched
70 @ 225	81	138	57	143	0.75	primary
	138	171	33	156	0.55	primary
	171	279	108	206	0.68	primary
	279	300.23	21.23	168	0.54	primary
M88*	0	73	73	246	0.09	leached
inclined	73	85	12	280	1.04	enriched
80 @ 315	85	190	105	408	0.82	primary
	190	349.91	159.91	137	0.34	primary

Drill Holes in Low Grade Core Zone							
Hole	From	То	Width(m)	Au ppb	Cu (%)	Zone	
M75	0	56	56	223	0.11	leached	
inclined	56	94	38	233	0.83	primary	
60 @ 135	94	144	50	3	0.01	post-mineral	
	144	237	93	72	0.33	primary	
	237	273	36	236	0.70	primary	
	273	300.25	27.25	182	0.48	primary	
M77	0	33	33	259	0.06	leached	
inclined	33	198	165	106	0.42	primary	
60 @ 135	198	231	33	114	0.70	primary	
	231	300.25	69.25	69	0.32	primary	
M78	0	13	13	201	0.07	leached	
inclined	13	70	57	210	0.73	primary	
55 @ 090	70	300.25	230.25	131	0.38	primary	
M80	0	55	55	230	0.08	leached	
inclined	55	82	27	193	1.17	enriched	
60 @ 135	82	300.23	218.23	80	0.22	primary	
M85*	0	42	42	192	0.06	leached	
inclined	42	59	17	204	1.21	enriched	
60 @ 225	59	182	123	105	0.26	primary	
	182	262	80	<5	< 0.01	late dike	
	262	284	22	298	0.96	primary	
	284	300.23	16.23	160	0.32	primary	
		-					

Drill Hole in Low Grade Halo							
Hole	Hole From To Width(m) Au ppb Cu (%) Zone						
M83	0	150.88	150.88	25	0.08	primary	
vertical							

Note: *waiting for re-run of low Cu-standard interval. ** Au re-assay pending. ***waiting for re-run of high Cu-standard interval. No material changes are expected from the re-assaying. Holes M85 and M86 have every third metre sent for metallurgical analysis and results from assays are pending. The Qualified Person for this disclosure is Ken Shannon (P.Geo).

Corriente has already completed five exploration drill holes at the recently discovered Mirador North Zone, which is three kilometres to the northwest. Drilling at Mirador North will be focused on delineation of additional copper resources in a system which has similar geological characteristics to Mirador. Drilling is expected to continue at Mirador North for approximately four weeks. Corriente has planned subsequent drilling in the Northern area of the Corriente Copper Belt. This drilling program will test a series of high quality porphyry targets in the vicinity of the Panantza and San Carlos deposits. Drilling is scheduled to continue through 2004.

Corriente controls a 100% interest in over 70,000 hectares located within the Corriente Copper Belt. The Belt extends over a 40 x 80 kilometre area in southeast Ecuador. The Belt currently contains three copper and copper-gold porphyry deposits with inferred resources of 560 Million tonnes of 0.81% copper with separate gold and molybdenum credits (Mirador, Panantza and San Carlos). Six additional copper and copper-gold exploration targets have been identified in the Corriente Copper Belt to date.

"Kenneth R. Shannon"

Kenneth R. Shannon, President

The Toronto Stock Exchange has neither approved nor disapproved of the information contained herein.

For further information please contact Mr. Dan Carriere, Senior Vice-President