

Disclosure statements as required by National Instrument 43-101 are available at our website www.corriente.com

"NEWS RELEASE"

For Immediate Release TSX: CTQ, AMEX: ETQ

December 12, 2006

DRILLING CONTINUES TO EXTEND COPPER MINERALIZATION AT PANANTZA

VANCOUVER, BRITISH COLUMBIA, December 12, 2006 – Corriente Resources Inc. announced today assay results received from the most recent fourteen holes drilled at Panantza as part of its feasibility drill program. These results follow the results of ten additional holes announced in Corriente's last Panantza feasibility drilling news release on September 7, 2006. Based on the success of drilling at Panantza to date, the Company is in the process of planning more holes to continue expanding the copper deposit to the south and west.

Current drilling results include hole PA041 with 443 metres of 0.60% copper and hole PA052 with 276 metres of 0.77% copper.

Located in southeast Ecuador approximately 40 km north of the Mirador project, Corriente has uncovered and previously disclosed Inferred resources at Panantza of approximately 395 million tonnes grading 0.67% copper containing 5.8 billion pounds of copper. The main purpose of this most recent drilling program is to help define the southwestern edge of mineralization for an updated resource calculation for Panantza. This resource calculation will be utilized in the planned feasibility study. The deepest holes from this round of drilling (such as PA051) indicate mineralization extends more than 200 metres deeper than previous drilling in the southwest portion of the deposit and mineralization remains open for further extension at depth. The deposit is also still open to the south and west.

Results for the new holes are listed below and a map of the current round of drilling can be found at www.corriente.com. Leached intervals are indicated with hyphens.

Hole	From	То	Width	Cu %	Zone
PA040	0	35	35	-	leached
	35	58	23	0.48	mixed
	58	87	29	1.02	primary
	87	319.13	232.13	0.08	late dike
PA041	0	57	57	-	leached
	57	161	104	0.66	primary
	161	353	192	0.45	primary
	353	500	147	0.74	primary
	500	507.49	7.49	0.30	primary
PA042	0	66	66	-	leached
angled 60	66	201.16	135.16	0.70	primary
045 azimuth					•
PA043	0	21	21	-	leached

Hole	From	То	Width	Cu %	Zone
	21	232	211	0.41	primary
	232	249.93	17.93	0.13	late dike
PA044	0	57	57	-	leached
angled 60	57	114	57	0.26	primary
090 azimuth	114	291	177	0.40	primary
	291	370.33	79.33	0.27	primary
DA 0.45		000	000	0.40	
PA045	0	289	289	0.18	primary
angled 65	289	318.3	29.3	-	late dike
090 azimuth	318.3	323	4.7	0.34	primary
	323	432	109	0.61	primary
	432	445.62	13.62	0.24	primary
PA046	0	58	58	-	leached/primary
angled 60	58	147	89	_	late dike
090 azimuth	147	158.49	11.49	0.10	late dike
JJO GZIIIIGUI	177	100.40	11.75	5.10	iato dino
PA047	0	23.1	23.1	-	overburden
angled 75	23.1	266.7	243.6	0.12	primary
090 azimuth					, ,
PA048	0	41	41	-	leached
	41	273	232	0.49	primary
	273	316	43	0.90	primary
	316	350.52	34.52	0.47	primary
PA049	0	32	32	-	leached
angled 70	32	350.52	318.52	0.65	primary
090 azimuth					
PA050	0	35	35	-	leached
angled 75	35	179	144	0.53	primary
270 azimuth	179	304.8	125.8	0.36	primary
54054		22.			
PA051	0	29.5	29.5	-	leached
	29.5	179.8	150.3	0.64	primary
	179.8	213	33.2	- 0.40	late dikes
	213	251	38	0.19	late dikes
	251	460.85	209.85	0.72	primary
PA052	0	17.37	17.37		overburden
F AUUZ	17.37	293.8	276.43	0.77	primary
includes	221	293.8	72.8		primary
includes		308.1	14.3	1.03	late dikes
	293.8	308.1 316.7		0.7E	
	308.1 316.7	316.7	8.6 3.34	0.75	primary late dike

Hole	From	То	Width	Cu %	Zone
PA053	0	18	18	-	leached
angled 60	18	102	84	0.67	primary
260 azimuth	102	225	123	0.26	late dikes
	225	400.81	175.81	0.62	primary

^{*}All holes are drilled vertically except as indicated in the table

The Qualified Person for this disclosure is John Drobe, P.Geo, Chief Geologist. The assay laboratory is ACME Analytical Laboratories Ltd.

ABOUT CORRIENTE

Corriente is moving towards construction of a starter operation at its Mirador copper-gold operation. Mirador is one of the few new, sizeable copper projects available for near-term production. Corriente controls a 100% interest in over 60,000 hectares located within the Corriente Copper Belt, Ecuador. The Belt currently contains four copper and copper-gold porphyry deposits: Mirador, Mirador Norte, Panantza and San Carlos. Additional exploration activities will be ongoing, as six additional copper and copper-gold exploration targets have been identified in the Corriente Copper Belt to date.

"Ken Shannon"

Kenneth R. Shannon Chief Executive Officer

For further information, please contact Mr. Dan Carriere, Senior Vice-President at (604) 687-0449 or see our web site at www.corriente.com.

Certain statements contained in this News Release constitute forward-looking statements. Such forward-looking statements involve a number of known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements of the company's plans to materially differ from any future results, performance or achievements expressed or implied by such forward-looking statements. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date the statements were made, and readers are advised to consider such forward-looking statements in light of the risks set forth in the company's continuous disclosure filings as found at www.sedar.com.